45 research outputs found

    Efficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning

    Full text link
    Decomposing tensors into orthogonal factors is a well-known task in statistics, machine learning, and signal processing. We study orthogonal outer product decompositions where the factors in the summands in the decomposition are required to be orthogonal across summands, by relating this orthogonal decomposition to the singular value decompositions of the flattenings. We show that it is a non-trivial assumption for a tensor to have such an orthogonal decomposition, and we show that it is unique (up to natural symmetries) in case it exists, in which case we also demonstrate how it can be efficiently and reliably obtained by a sequence of singular value decompositions. We demonstrate how the factoring algorithm can be applied for parameter identification in latent variable and mixture models

    The Algebraic Approach to Phase Retrieval and Explicit Inversion at the Identifiability Threshold

    Get PDF
    We study phase retrieval from magnitude measurements of an unknown signal as an algebraic estimation problem. Indeed, phase retrieval from rank-one and more general linear measurements can be treated in an algebraic way. It is verified that a certain number of generic rank-one or generic linear measurements are sufficient to enable signal reconstruction for generic signals, and slightly more generic measurements yield reconstructability for all signals. Our results solve a few open problems stated in the recent literature. Furthermore, we show how the algebraic estimation problem can be solved by a closed-form algebraic estimation technique, termed ideal regression, providing non-asymptotic success guarantees

    Approximate Rank-Detecting Factorization of Low-Rank Tensors

    Full text link
    We present an algorithm, AROFAC2, which detects the (CP-)rank of a degree 3 tensor and calculates its factorization into rank-one components. We provide generative conditions for the algorithm to work and demonstrate on both synthetic and real world data that AROFAC2 is a potentially outperforming alternative to the gold standard PARAFAC over which it has the advantages that it can intrinsically detect the true rank, avoids spurious components, and is stable with respect to outliers and non-Gaussian noise

    Matroid Regression

    Get PDF
    We propose an algebraic combinatorial method for solving large sparse linear systems of equations locally - that is, a method which can compute single evaluations of the signal without computing the whole signal. The method scales only in the sparsity of the system and not in its size, and allows to provide error estimates for any solution method. At the heart of our approach is the so-called regression matroid, a combinatorial object associated to sparsity patterns, which allows to replace inversion of the large matrix with the inversion of a kernel matrix that is constant size. We show that our method provides the best linear unbiased estimator (BLUE) for this setting and the minimum variance unbiased estimator (MVUE) under Gaussian noise assumptions, and furthermore we show that the size of the kernel matrix which is to be inverted can be traded off with accuracy

    Dual-to-kernel learning with ideals

    Get PDF
    In this paper, we propose a theory which unifies kernel learning and symbolic algebraic methods. We show that both worlds are inherently dual to each other, and we use this duality to combine the structure-awareness of algebraic methods with the efficiency and generality of kernels. The main idea lies in relating polynomial rings to feature space, and ideals to manifolds, then exploiting this generative-discriminative duality on kernel matrices. We illustrate this by proposing two algorithms, IPCA and AVICA, for simultaneous manifold and feature learning, and test their accuracy on synthetic and real world data.Comment: 15 pages, 1 figur

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely
    corecore